5 research outputs found

    Hysteretic Control Technique for Overload Problem Solution in Network of SIP Servers

    Get PDF
    This paper contains research and development results concerning application of hysteretic control principles to solve SIP servers overload problem, which is known from a number of IETF standards and scientific papers published over the past few years. The problem is that SIP protocol, being the application layer protocol, by default has no build-in means of overload control, as, for example, SS7, MTP2 and MTP3 protocols. It was the SS7 network, where a threshold mechanism of hysteretic signalling load control was first implemented. In this paper we describe the main up-to-date solutions of an overload control problem in a signalling network, and develop analytical models of hysteretic control, which are useful in the development of load management functions of SIP servers. We also propose the design of Open SIP signalling Node (OSN) software architecture which is intended to be used for simulations and comparison of various overload control mechanisms

    Self-Service System with Rating Dependent Arrivals

    Get PDF
    A multi-server infinite buffer queueing system with additional servers (assistants) providing help to the main servers when they encounter problems is considered as the model of real-world systems with customers’ self-service. Such systems are widely used in many areas of human activity. An arrival flow is assumed to be the novel essential generalization of the known Markov Arrival Process (MAP) to the case of the dynamic dependence of the parameters of the MAP on the rating of the system. The rating is the process defined at any moment by the quality of service of previously arrived customers. The possibilities of a customers immediate departure from the system at the entrance to the system and the buffer due to impatience are taken into account. The system is analyzed via the use of the results for multi-dimensional Markov chains with level-dependent behavior. The transparent stability condition is derived, as well as the expressions for the key performance indicators of the system in terms of the stationary probabilities of the Markov chain. Numerical results are provided

    Self-Service System with Rating Dependent Arrivals

    No full text
    A multi-server infinite buffer queueing system with additional servers (assistants) providing help to the main servers when they encounter problems is considered as the model of real-world systems with customers’ self-service. Such systems are widely used in many areas of human activity. An arrival flow is assumed to be the novel essential generalization of the known Markov Arrival Process (MAP) to the case of the dynamic dependence of the parameters of the MAP on the rating of the system. The rating is the process defined at any moment by the quality of service of previously arrived customers. The possibilities of a customers immediate departure from the system at the entrance to the system and the buffer due to impatience are taken into account. The system is analyzed via the use of the results for multi-dimensional Markov chains with level-dependent behavior. The transparent stability condition is derived, as well as the expressions for the key performance indicators of the system in terms of the stationary probabilities of the Markov chain. Numerical results are provided

    Self-Service System with Rating Dependent Arrivals

    No full text
    A multi-server infinite buffer queueing system with additional servers (assistants) providing help to the main servers when they encounter problems is considered as the model of real-world systems with customers’ self-service. Such systems are widely used in many areas of human activity. An arrival flow is assumed to be the novel essential generalization of the known Markov Arrival Process (MAP) to the case of the dynamic dependence of the parameters of the MAP on the rating of the system. The rating is the process defined at any moment by the quality of service of previously arrived customers. The possibilities of a customers immediate departure from the system at the entrance to the system and the buffer due to impatience are taken into account. The system is analyzed via the use of the results for multi-dimensional Markov chains with level-dependent behavior. The transparent stability condition is derived, as well as the expressions for the key performance indicators of the system in terms of the stationary probabilities of the Markov chain. Numerical results are provided

    Modeling Coexistence of Unicast and Multicast Communications in 5G New Radio Systems

    Get PDF
    Multicasting is widely used in conventional wired and wireless networks as it allows to significantly improve resource utilization in presence of users interested in the same content. However, the support of this type of service in prospective 5G New Radio (NR) systems has received only little attention so far. In this paper, merging the tools of queuing theory and stochastic geometry we develop a model of 5G NR base station (BS) serving a mixture of unicast and multicast traffic. We validate our model against computer simulations using multicast/unicast session drop probabilities and system resource utilization as metrics of interest. Our numerical results illustrate that the presence of multicast type of traffic severely compromises performance of unicast sessions. Furthermore, this effect is amplified when the inter-site distance (ISD) between BSs increases. Thus, in order to satisfy prescribed performance guarantees in terms of unicast and multicast session drop probabilities, explicit resource reservation mechanism at NR BS might be required.acceptedVersionPeer reviewe
    corecore